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DAMPING IN PITCH AND ROLL: OF TRTANGULAR o
WINGS AT SUPERSONIC SPEEDS : T - -

By Clinton E. Brown and Mac C. Adems

A method 1s derived for calculating the damping coefficlents in _
pltch and roll for e series of triangular wings end a restricted seriss .
of swepbtback wings at supersonic speeds. The elementary "supsrsonic - -
gsourcs" solution of the linearized equation of motion is used to find
the potentlal function of a line of doublets, and the flows are obtained
by surface distributions of these doublet lines. The damping derlvatives
for trlangular wings are found to be a function of the ratio of the T
tangent of the apex angle to the tangent of the Mach engle. As this
ratio becomss equal to and greater than 1.0 for triangular wings, the
damping derivatives, in pitch and in roll, becoms constant. The damping
derivative in roll becomes equal to onse—half the velus calculated for
en Infinite rectangular wing, and the damping derivative in pitch for
pltching ebout the apex becomes equal to 3.375 times that of an
Infinite rectangular wing.

INTRODUCTTION

In reference 1, a stralghtforwerd method was found for calculating _
the 11ft and the drag due to 1ift of triangular wings. The present e
paper extends the method to the calculetlon of rolling and pltching
motions of the wings. The damping coefficients in roll and pitch for o
the limiting case of very slender wings have been calculated (reference 2)
The pregent theory is not limited by the slze of the epex engle, and
trianguler wings with leading edges shead of and behind the Mach cane
originating at the apex of the wing are treated.

In the present theory, based on the linearized equations of motion,
the wlng 1s represented by a doublet distribution which can be shown to
be equivelent to a vortex distribution. An inbtegral equatlion is found
which can be easily solved by analogy with known relatlons for two—
dimensionel incompressible flow. The pressure distributlions presented
mey be used to calculete the dempling coefflclents of a limited serles of
wings for which the tralling edges ere cut off so that they lie ghead of
the Mach cone springing from thelr foremost point.
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SYMBOLS

coordinates of field point (see fig. 1)

coordlnates of a source or doublet

disturbdnce—potential function

potential of supersonic source

potentlal of supersonic source distribution
potentiel of supersonic doublet distribution
potential of a line of doublets

gource or doublet strength

tangent of half-epex angle
1£t forci>

11ift coefficlent T
EpVQS

i i
pltching-moment coefficient <f tehing momenf)

-;-pvesa

rolling-moment coefficlent (Rolling moment>

2
%pv Sb
haelf of apex angle of wing

doublet—line—distribution function

root chord

b/2
meen serodynamic chord (& = g—“/W (Local chord.)2 dy = %c
0

point about which the wing pltches
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P pv/ev

H o ©

=

E*(pC)

Mach number
density of fluid

free—stream veloclity

incremental velocity component in x—direction

1lifting—pressure coefficient Lifting pressure
Lov2

2
Mach engle (sinT'l nla)

x—-Beyo

A= 2R e - B2 + 22)

wing ares ' B —
enguler velocity of pitch R
angular veloclty of roll
maximum gpan of wing
constant

z—component of velocity

smell quantlty

/2
complete elliptic integral f /l — (1 - B2C2) gin®n dn
0
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/2 .
F1(BC) complete elliptic integral f dn
0 /1-(1-p2c2) sintn
Subscripts:
q pltching condition
P rolling condition
1 incompresasible

ANAIYSIS -

Solutions must be found that satisfy the linearlzed differential
equation of & nonviscous compressible fluld written

23°% 3% 3% _
ST T (a)

where x, y, z are Cartesian coordinates (see fig. 1), and @ 1is the
digturbance-potentiael function created by the wing. An elementary
solution of this equation known as the potentlal of a supersonic source
may be written

= —A '
o (x-x)2 -p2(F —y)? — 82z — z1)° =)

The quantity A 1s the strength coefficient of the source. New
golutions may be obtained by superposition of such potentisels as shown
in reference 3. For example, a dlstribution of sources over a portion
of the xy—plane would give the potential

'ay e —A(xy, v1) dxyay
b=J, . l
3 &y

[z - 2102 2( - yy — 222 )

whers the limite chosen must be such thet all sources will be located
wlthin the forward Mach cone from the field puint (x,y,z). Another
solution may now be obtalned by differentiatlion with respect to any of
the coordinate directions, that is,
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s | :
s
a), ans _A(xl:yl) d'xl d-yl
=g;£ ]\ (%)
3 %1 Wx —x;)2 = 2(y — 3, )2 — 222

This solution, however, may be considered the vertical or z—component
velocity of the source—distribution potential ¢s, and as shown in
reference 3

¢D = ﬁtA(X,Y) (5)
&z —>0

The step teken in equation (%) also corresponds to the formation of =
doublet potential, that is, ¢D represents & dlistributlon of doublets

over the xy-plene with strengths proportional to A(xy,y1). For any

known doublet distribution, the wveloecity compoment paraellel to the surface
in any direction s msay immediately be obtained from equation (5) :

Y 3s O (6)

The foregoing results are analogous to incompresslble—flow relations and
it may be stated 1n general that for every doublet distribution there 1s

a vortex distribution which will produce a similer fiow. The vortex
digtribution and doublet dlstribution are directly related by equations (5)
and (6). These simple concepts, glven first by Prandtl (reference 4), may
be used directly to obtain the solution of problems in which the pressure
distributions are given, such as eirfolls of uniform loading. If the
equation of the surface 1s glven and the pressure dlstribution is required,
integral equetlions must be solved. In certain cases, the problem may be
simplified 1f the form of the flnal potential is known. In reference 2
the dilsturbance potentlal for wings of very low aspect ratio was found t
be in the form _ o -

¢« L2(L.5) (7)
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This form of the potential appeers quite loglical from the standpoint of
satlisfyling the boundary condltions for steady rolling or pitching.. In
the following analysls, the assumptlon of a potential in the form of
equation (7) 1s shown to be correct; howsver, it should be pointed out
that the potentisl of thils type must be restricted to the linearized
theory and 1s not of the same general nature as that of a conlcel field
which exists even in the nonlinear problems.

From equation (7) the doublet distribution over the surface will

e in the form
Yy
= . 2p( 21
A_xli’(x) (8)

and undar the essumptions of the linearized theory the lifting—pressure
coefficlent 1s now:

_ hvy
v
T

s . _ L
1 1\ 71 1
= efe-]—)— % f'é-f) (9)

The formation of the integral equation follows the method of
reference 1. A potential that represents a line of doublets in the
xy—plane at an angle tan™lo to the x-axls is derived in the form of
equation (7). Use is made of the boundary conditions to set up an
integral equation that introduces the unknown distribution function f(o).
The potential of the doublet line may be obtained by following a procedurse

P

gimilar to that used in obtaining equations (3) and (4), and by substituting

the expression for A gilven in equation (8) into equation (4). The
expression obtalned in the following equetlon may be ssen to reprosent a
line of doublets along which the doublet strength increases as x3:

y X —x,3 dx
g-2 [ s A N
Sz fx - x1)2 — p2(y — ox1)2 — p222

2 2
_Bz(x—BO'.Y) 3coth_l§——€—
(1 — p2a2)5/2 t2 -1
, 282z VxR — B2(y2 + z2)
(1 - p2?)2

(10)_
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where - ot

£ - (x — fPay)

V1 - p262 [/x® - p2(y2 + 22)

and x' is the value of x; for which the denominator of the integrand

vanishes. The potential of the complete wing may now be obtained by an
integration with respect to the dimsesnsionless parameter o )

c
¢=f_c £(o)gy, do o o (1)

where tan—lC = ¢, the half-apex angle, end £(o) is an unknown distri-—
bution function. The z—component veloclty w can be written for B %

approaching zero

8C ¢

3¢ pe(0) @ — p300) ~ 4 a<52 -;>

w_é;_—x . (1—3202)5/2 SGOthlg—g—e——l-—Zaz— d(BU)
C

+ axf‘?’c Bt (o) /1 — 262 - -

0 (1 PR) d(po) (;?_)

where 6 = % for convenlsence. The boundary conditions for rolling may
now be written

or L e

= —po (13)

Mg
I

For pltching sbout the y—eaxis, there is obtalned

w = —gx
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or

Introduction of equations (13) and (1%) into equation (12) provides
Integrel equaetions which theoretically can be solved for the unknown
function f(g). Simpler relations, however, may be obtalned if
equation (12) is differentlated twice with respect to 6 to obtain the

quentity égggézl. The method for differentiating ls indlcated in the

appendix and gives

aeé: N fﬁ“-ﬂ) p32(0) a(po)

(Bo — po)*

p(6+n) (Bo — B6

C 3¢ "
e

The boundary condltions requlre the foregolng quantity to be zero for
both rolling and pitching with the additional requirements on f£(o) that,
for rolling, at the polnt 6 = 0

(w/x)P =0 (16)
and, for pitching,
B(w/x)q
—9% .0 . (17)
J6

Equation (15) now yields, for rolling,

(6-n) £(a), do £(0), do [f"<e> (e)
lim € p, fl6)y = 8
n—0 — ( J[6+q) (c-— e) K * n3 ° L8

=
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and, for pitching,

1im (6-n) £(o), do ¢ f£(o) do £"(e)  £(8)
6 6 —a 4 15 = 0 (19)
e f—c (G- ol f(em) (o — o)F n 3 (29

Equations (18) and (19) are identical to the equations that would be

obtained for similar boundary conditions on a two—dimensional flat plate

1f an analogous process of distributing the doublets were followed. (See
appendix.) The analogue for the rolling motlon of a triangular wing

would be a two—dimensional flat plate rotating about its midchord point ==~ _
in a stationary stream. The surface potential distribution and therefore

the doublet distribution would be

= 2 _ S :
f(c)p = K0 /e o2 -(20)
For the pltching condition the analogue would be a two—dimensional
flat plate in a stream flowlng normal to the surface. The potential or
doublet distribution would be T
= 2 _
£(0)g = K, Vo @ (21)

These potentials, which can be found in references 2 and 5, satisfy -
equetions (18) and (19) by analogy; howsever, the conditions of equations (16)
and (g.’z) mist be shown to be satisfied. For the calculations of (w/x)g

W

/x)
and —5?——9‘, and the evaluation of Kp and Kq, only one value of 6

need be consldered. This value maey convenlently be set equal to zero. Far
rolling motion, equation (20) indicates the doublet distribution to be
entisymetric. Therefore the value of w/x at 6 = O must be zero, and
the condition of equation (16) is satisfied. For the piltching motion,

the doublet distribution 1s symmetricel sbout 6 = 0 and therefore the

quantity %’glmus‘b be zero at 6 = O and the condition of equation (17)
ig satisfied.

The constants Kp and Kq may now be evaluated from the relations
obtained in the appendix for 6 = 0 e
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Va2 — g22 '
gco- — B tanh ™ /1 — 202 a(Bo)

—BC

@ - 2e2)>/°

c Q-

BC 22 i B(é—) [p2c2 - p2
BC_BQC@d(BU)+Kf ) RO - B a(po)

im

=L

B202)2 B2RPQL — p20R)2
/6202 — p2c® a(Bo) — 2ookg (22)
B(6+n) B2 — p262)° Bn

BPPYBRCE — 202 |t VL = 822 a(po)

@ - p2e2)5/2

‘/5202 — p2g2

a(Bo)
B(6+n) p2g2 °
'3202‘/‘3202 - B2g2 a(po) — KP fBC LB/ 202 3202 a(po)
@ - 822" —8C (1 - 2P)
(23)

-

-
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Equations (22) and (23) may be integrated by use of tebles (reference 6)
to give

P 2.2 2n2 i
2 — B=C° _, B=C
p= ————— E'(BC) — ———— F*(pC) (2k)
"Kp 1 — p2c 1 — p2¢2
[ 2.2 2.2
1 - 28°C B=C
CN M 5202 1'— p2c2

F*(BC) and E'(BC) are complete elliptic imtegrels of the first and
second kind.

The pressure distribution for the rolling wing msy now be obtained
from equations (9), (20), and (24) and the pressure coefficlent is

P = 4xpcPe - (26)
2 2,2 '
v 2_:5_02 Et(BC) — ﬂé— Ft(BC) I/CZ — g2
1 ~ p2c? 1 - g2

Integration of the pressures over the wing surface gives the forces and
moments acting on the wing. The nondimenslonel derivetive C; maey then
be found P

—ntC
Cz =

0" . . (27)
2 — B 02 B 02
4 |————— E*(BC) — ———— F*(BC)
[ 2,2 1 g2c2 ]

In the enalysis the pltching axls has been teken at the wing spex;
however, in application 1t is desirable to obtain the pressure distribu—
tion and the force and moment coefficients for pitching about any point.
A superposition of motions 1s therefore required. The pitching motion
about any polnt X5 can be made up of a pure pltching motion about the
apex of the wing combined with a vertical translational motion of
velocity qxXgye The pressure distributlion for thls translational motion

corresponds to that of a wing at a constant angle of attack of
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ax .
- "V'g (See references 1 and 7.) The pressure distribution for the

constant angle ©f ettack — S-_;Q is

—402q,
P 0 (28)
vE! (BC) i?ca - 62
Combining equations (9), (21), (25), and (28) glves for the pressure
distribution in the pitching case
VR - 68 |L =28 by a0y b B2 pe(po) XE'(RO)
1 — p2c° 1 - p2c?

Integretion of the pressures over the wing surface and formation of the
nondimensional derivative yilelds

22 -
P Lo28 mipo) 4 —EO ge(poy BH(RON
1 - g°C 1 - p=C
and
—61rc<§ - Ec"g> hn:Cxo( - 5_?-)
C
1 — 2622 4, ( B=C GE*(BC)
s BC) + ———— F*(BC)
1 — p2c? 1 — p2c®

where T 1s the mean aserodynamic chord.

Calculations of these derivatives for triangular wings having their
leading edges outside the Mach cone are most easily made by the source
distribution method. In thilg method, the upper and lower sildes of the
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wing may be consldered independent of each other. The source distribution
function for the rolling wing is e S

ap (7)) = Ky (32)

whereas that for the pitching wing is . o e

8q (x1,7D) = Bxy (33)

The calculation of the pressure distribution is not presented, since the
subJect of the integration of source distributlons has been well covered
in reference 3.

The pressure dlstributlion for rolling wings outside the thh cone has
been calculated to be

. . o
P = hpC7x (1 + p2C6) cos * E—i—EEEE - (1 - B20H) cos™t 1 - B%s
7(p2c2 - 1)3/2 B(C + @) B(c - o)

(34)

Integrating the pressures over the wing and expressing the derivative in
nondimensional form glives

cr, - -4 e

For the pressure distribution dus to piltching about the point X5, @&

combination of flow patterms must again be used. The pressure distributim

q:
of a wing at uniform angle of attack --;Q is (reference 3)

o _ haxC -1 1-p%e -1'1 + gecf] (36)

M/Beca B(c - o) B(C + ©)

The pressure dlstribution for pitching then becomes o -
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P - hqx EBCVS — p262 - g3¢3 — 2pc ~ BB a1 5205
e | g2cR -1 (B2c® — 1)3/2 B(C + 6)

,B%3-200+86 31 g%0
(p2c2 — 1)3/2 B(c —8)

L C 2
- qfoﬁ cos™ 1+ P0Co + cog™L l:—E?E?- (37)
nva/ééce -1 B(c + o) B(C — o)
The nondimensional derivatives CL and Qm then become
q a .
8x
8 0
Cp =2 — — 8
g "B p& o (38
X,
9 -8 —= 8
=2 1-3)
= - + == (39)
Cmq B BE c :

DISCUSSION AND CONCLUSIONS

Expressions for the lifting-preesure coefficlents over trlangular
wings in roll are given in equations (26) and-(34) and in pitch in
equations (29) and (37). Equations (26) and (29) are for wings
inside the Mach cone and equations (34) and (37) for wings outside
the Mach cone. Typical pressure distributions are shown in figure 2
in which the pressure distributions for the two wings In pitch ars
for piltching about the apex.

Expressions for the quantitles CZP, CLq’ and qu are given in

equations (27), (30), and (31), respectively, for the case of the wing
inside the Mach cone and in equations (35), (38), and (39) for wings lying
outslde the Mach cone. It will be seen that the parameters BCZP, BCLq,

and quq may be expressed as functions of PBC where
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_ tan € _

C =
B tan p

The =tability derivatives may therefore be plotted against this parameter,
to glve curves which will hold for all trienguler wings at any Mach number.
These curves are glven in figures 3, 4, and 5. For values of fC
approaching zero the values of the derivatives closely approach those
glven in reference 2 which were based on the assumption of very low o
aspect ratlo. —

For values of fC 21 (that is, for the wing lying outside the Mach
cone), the quantities BCZP and chq become constant, and equal to
- %‘ end —1, respectively, (the pitching being about the %c point). In
comparison, the value of BCIP and BC‘mq for infinite-span, rectangular

wings are — -%- and — § respectively, (the pitching being about the

3’

leading edges).

It should be pointed out that the pressure dilstributions given in
this paper may be used directly to calculete the damping in pitch and
roll for wings having trailing edges cut off shead of the Mach cone, the
most interesting of this series being the so—called "arrow wings."

It is apparent that a suctlon force exlsts at the leading edges of
wings in pitch and roll whenever the leading edges ere swept behind the
Mach cone. A method for obtaining the velues of these suctlon forces
was derived in reference 1.

Langley Memorial Aeronsutical Ieboretory
Nationel Advisory Committee for Aeronautics
Iengley Fleld, Va., December 12, 1947



APPENDIX
METHOD FOR DIFFERENTTATTON OF EQUATTION (12)

The expression for w (equation (12)) camnot be used directly whem =z 1is set equal to zero

because of a troublescme singlerity In the term 5 C end the occurrence of an indsterminate form
t= -1

under the Integral sign. To obtaln the value of w om the surface, however, 1t is possible to

integrate end then set z equal to zero. The troublesoms parts of equation (12) come from the terms

involving — t . These terms, written out, may be integrated as followa:
-1 :
( )
pC o o
: A=z 2 \2
2 2 22 (1-p%00)
2
R ) 1 _ 2 R
1 .
e (po-s0F + 1-2AEL  (4%7) Eﬁo-ﬂe 2 + (1-3%2)9:;_]

) §

8# (o) (1—$200)°

|

! Nt

ol B3 ee L d[
|0 G5Re0) (" (poso) N e f a(Bo){po-50) (-£2c2)”
2.0 8222 a(pa)

_(1—5202)2 l:(Ba—BG)aJir (1-3202)5;5—} . g (B0 + QHPF)

(1)

9T

99CT "ON NI VOVN



Introducing the limita and then setting z = 0 glves g
2 =
. . BC d,;f(u)(l — %00) .
_B£(C)(1 — 6260)7Y1 —~ %6 pr(-C)(L + 8200)2 /L — p6° . m a(Ba) | (1 — p22)° :
(1 - g2%c2)"(pe — po) (1 — p2c2)°(pC + p6) Bo — B0 1(po) 5
B0 &
(A2)

The integral term of the expreseion (A2) i1s improper, however, and must be evaluated st the singular
polnt 0 = o. If the expreselon (A2) 1s now integrated by parta, account belng taken of the slngular -
point, there 1s obtained with 2z = 0

B(6-) - JAN- il _ 2
nE:o J1 - &6 f L EE{o)(3 2 8" o0) ? d(ﬂo)] + L - P [( Bf(0)(1 — p200) d(ﬁo):l

e 1 - 8%62)°(po ~ po Ble+n) (1 — 8262)°(po ~ po)?

(43)

_ af(e)ﬁ — p2g°
1




Equation (12) may now be rewritten for w/x with z = 0:

a{go)

v lim rfﬂ(e'“) pe(o)/L — PP (L — §Po8)° 2(po) — 382(0) (1 — p208) cothlt
x n—wi ~BC (1 - 5202)2(30 - pe)° (1 - 3252)5/9

, 262la)fa — p2p< d(Ba)J . ffc )Esf(uh/l — B262(1 ~ 32u9)2 )
6+

; a(p
Q - BRF B - PR (Ba - gl

(a4)

- p2 -1 252
_3ae(a)(2 - p “9)2""’“1 € o(po) + 25N = 0% d(ﬂu)] _ex(o)h - 26
(1 - §°°) (1 - 6%°) n

Following Leibnitz! rule for differentiation under the integral sign and collecting terma gives
Pinally: )

gt
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sw/r) _ 1tm ) (PO 3e30e(o) ooty ooy (380 +280 + B022)z (a) .
S f (1 - pRe2)7/2 (bo) /1 — p262(1 - PR (po)
peper (o) p2e(o) 222 (o)/L — poeR X
- (Bo)
e ol ) TR TR e ) P T e
X fﬁc 3%0f (o) coti e . oy BP(300 + 260 + BORRRNE(0)
B(e+q) | (1 - p22)5/2 . m(l _ 3202)2
pop2f (o) _ 622 (o) 2p°¢ (o)1 — p°26°
1/1 — B262(po — pO)° 2(po) V1 - 826E(1 — p262)(Bo — BO) pe) + (Bo — po)3 2{po)
__oper(e) 1 — pRePre(s) (5)
nﬁ ~ B%P 1 .

99GT "ON NI VOVN




The second differentiestlon now glves ]
Flofe) | 1 | f T ER P a(go) + 6 - 2 _E2(0) _ 4(g)
3¢ n—»0 8¢ (po — po)t B(9+11) (Bo — pa)
" f
~wf _ e [i%l . _(.gl] (46)
n
The same process may be carried through for an incompreseible, two—dimensional flow. The potential of
a egingle doublet at a polint (yl,o) in a two~dimensional field (Y,Z) would be (reference 8)
g = z (A7)
{yy — 77 + 22
from which wy, the velccity normal to a flat plate extending along the y-exis from ~C to C,
would be
c 2
- [ ) an L e (a8)
- (77 —¥)F+25 (—-y)F+x
Integrating by parts, then setting z = 0 as in equations (Al) to (A4) gives for z =0 :
=
s
0

) e(y) any  [C 20y) ayy _2e(y)
-~ (a9)
" “""0 f (v, 1)2 f(rﬂl) (7 -3 0

9941



Differentiating twice with respect to y glves

2w _ Lm | PO GG oy f“ 6(1) 1 _key) _ Me"(y) (10)
(

o "Ny -v) y) (g~ 0 L

This equation, except For the factor 1 — %, 1s analogous to equation (A6). When the bomndary

2
B_égx) to be zero, the factor may be omitted and solutions of equation (A10)

are then seen to be solutions of equation (A6).

conditions require the term

"CN NI VOVN

9951
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‘ Figure 2,- Pressure distributions for rolling and pitching about apex.
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